A functional CLT for the occupation time of state-dependent branching random walk
نویسنده
چکیده
We show that the centred occupation time process of the origin of a system of critical binary branching random walks in dimension d ≥ 3, started off either from a Poisson field or in equilibrium, when suitably normalised, converges to a Brownian motion in d ≥ 4. In d = 3, the limit process is fractional Brownian motion with Hurst parameter 3/4 when starting in equilibrium, and a related Gaussian process when starting from a Poisson field. For (dependent) branching random walks with state dependent branching rate we obtain convergence in f.d.d. to the same limit process, and for d = 3 also a functional limit theorem.
منابع مشابه
Central Limit Theorem in Multitype Branching Random Walk
A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.
متن کاملA PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS
A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...
متن کاملFunctional Clt for Random Walk among Bounded Random Conductances
ABSTRACT. We consider the nearest-neighbor simple random walk on Z, d ≥ 2, driven by a field of i.i.d. random nearest-neighbor conductances ωxy ∈ [0, 1]. Apart from the requirement that the bonds with positive conductances percolate, we pose no restriction on the law of the ω’s. We prove that, for a.e. realization of the environment, the path distribution of the walk converges weakly to that of...
متن کامل0 Occupation Time Fluctuations in Branching Systems
We consider particle systems in locally compact Abelian groups with particles moving according to a process with symmetric stationary independent increments and undergoing one and two levels of critical branching. We obtain long time fluctuation limits for the occupation time process of the one– and two–level systems. We give complete results for the case of finite variance branching, where the...
متن کاملOccupation Time Large Deviations for Critical Branching Brownian Motion, Super-brownian Motion and Related Processes
We derive a large deviation principle for the occupation time functional, acting on functions with zero Lebesgue integral, for both superBrownian motion and critical branching Brownian motion in three dimensions. Our technique, based on a moment formula of Dynkin, allows us to compute the exact rate functions, which differ for the two processes. Obtaining the exact rate function for the super-B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008